update
This commit is contained in:
parent
82d6d2f9b9
commit
18d0062e13
2 changed files with 76 additions and 1 deletions
68
2.typ
68
2.typ
|
|
@ -811,7 +811,10 @@ where $bb(L)_!(A,B) := bb(L)(!A, B)$
|
|||
]
|
||||
|
||||
#exercise[
|
||||
Prove this defines a category :
|
||||
Prove this defines a category.
|
||||
]
|
||||
|
||||
#solution[
|
||||
- Identity is $epsilon$
|
||||
- $f << epsilon_A = f compose !epsilon_A compose eta_A = f$
|
||||
- $epsilon_B << f = epsilon_B compose !f compose eta_A = f compose epsilon_(!A) compose eta_A = f$
|
||||
|
|
@ -845,3 +848,66 @@ where $bb(L)_!(A,B) := bb(L)(!A, B)$
|
|||
edge((0, 0), (0, 1), [$nu_A$], label-side: right, "->")
|
||||
}))
|
||||
]
|
||||
|
||||
=== The Seely isomorphisms
|
||||
|
||||
Let $A, B in Ob(LL)$. Assue the cartesian product $A \& B$ exists in $LL$.
|
||||
|
||||
$V$ is the right adjoint $=>$ preserves limits.
|
||||
|
||||
$V ( A \& B ) tilde.eq V A times V B$
|
||||
|
||||
$L$ is strongly monoidal so $L (V A times V B) tilde.eq underbrace(L V A, !A) (*) underbrace(L V B, !B)$
|
||||
|
||||
So $underbrace(L V (A \& B), !(A \& B)) tilde.eq L V A (*) L V B tilde.eq !A (*) !B$
|
||||
|
||||
Similarly, if $LL$ has a terminal object $top$, $!top tilde.eq 1$.
|
||||
|
||||
== A model of Linear Logic : Probabilistic coherence spaces
|
||||
|
||||
#definition(subtitle: [Duality in $RR^X_+$])[
|
||||
Let $X$ be a countable set :
|
||||
- For all $x in X$, define $Pi_x : cases(RR^X_+ -> RR_+, a space t-> space a_x)$
|
||||
|
||||
define $e_x in RR^X_+$ by $pi_x(e_x) = 1$
|
||||
- For all $a, b in RR^X_+$, let $a ⋅ b = sum_(x in X) a_x b_x in [0, +infinity[]$
|
||||
- For all $P subset.eq RR^X_+$, let
|
||||
$
|
||||
P^bot = { b in RR^X_+; forall a in P, underbrace((a⋅b <= 1), R(A, b)) } subset.eq RR^X_+
|
||||
$
|
||||
In particular $P^(bot bot) subset.eq P$
|
||||
]
|
||||
|
||||
#definition([
|
||||
A probabilistic coherent space is a pair
|
||||
$X = (|X|, P X)$ where $|X|$ is a countable set, and $P X subset.eq RR^(|X|)_+$ such that
|
||||
- $P X ^(bot bot) = P X$ (equivalent to $P X ^(bot bot) subset.eq P X$)
|
||||
- $forall x in |X|$,
|
||||
- $exists lambda > 0, lambda e_X in P X$
|
||||
- $exists lambda > 0, lambda e_x in P X ^bot$
|
||||
])
|
||||
|
||||
|
||||
#example[
|
||||
$
|
||||
({*}, [0, 1]) &=: 1\
|
||||
&=: bot\
|
||||
(emptyset, {0}) &=: top\
|
||||
&=: 0\
|
||||
(|X|, [0, 1]^(|X|))\
|
||||
({0, 1}, ([0, 1]^2)^bot &= {binom(x, y) | (binom(1, 1) dot binom(x, y)) = x + y <= 1 }) \
|
||||
$
|
||||
Given $X = (|X|, P X)$ a pcoh,
|
||||
$X^bot := (|X|, P X^bot)$ is a pcoh.
|
||||
]
|
||||
|
||||
#definition([
|
||||
Let $X, Y$ be pcohs.
|
||||
A _linear morphism_ from $X$ to $Y$ is a map \
|
||||
#align(center)[$f in "Set"(P X, P Y)$]
|
||||
such that there exists a (necessarily unique) matrix $tilde(f) in RR^(|X| times |Y|)_+$ such that
|
||||
for all $a in P X$, \
|
||||
#align(center)[$f(a) = (sum_(x in X) tilde(f)_(x,y) a_x)_(y in |Y|)$]
|
||||
pcohs and linear morphisms form a category PCoh.
|
||||
])
|
||||
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue