This commit is contained in:
Lyes Saadi 2026-01-15 19:01:12 +01:00
parent 82d6d2f9b9
commit 18d0062e13
Signed by: lyes
GPG key ID: 55A1D803917CF39A
2 changed files with 76 additions and 1 deletions

68
2.typ
View file

@ -811,7 +811,10 @@ where $bb(L)_!(A,B) := bb(L)(!A, B)$
]
#exercise[
Prove this defines a category :
Prove this defines a category.
]
#solution[
- Identity is $epsilon$
- $f << epsilon_A = f compose !epsilon_A compose eta_A = f$
- $epsilon_B << f = epsilon_B compose !f compose eta_A = f compose epsilon_(!A) compose eta_A = f$
@ -845,3 +848,66 @@ where $bb(L)_!(A,B) := bb(L)(!A, B)$
edge((0, 0), (0, 1), [$nu_A$], label-side: right, "->")
}))
]
=== The Seely isomorphisms
Let $A, B in Ob(LL)$. Assue the cartesian product $A \& B$ exists in $LL$.
$V$ is the right adjoint $=>$ preserves limits.
$V ( A \& B ) tilde.eq V A times V B$
$L$ is strongly monoidal so $L (V A times V B) tilde.eq underbrace(L V A, !A) (*) underbrace(L V B, !B)$
So $underbrace(L V (A \& B), !(A \& B)) tilde.eq L V A (*) L V B tilde.eq !A (*) !B$
Similarly, if $LL$ has a terminal object $top$, $!top tilde.eq 1$.
== A model of Linear Logic : Probabilistic coherence spaces
#definition(subtitle: [Duality in $RR^X_+$])[
Let $X$ be a countable set :
- For all $x in X$, define $Pi_x : cases(RR^X_+ -> RR_+, a space t-> space a_x)$
define $e_x in RR^X_+$ by $pi_x(e_x) = 1$
- For all $a, b in RR^X_+$, let $a b = sum_(x in X) a_x b_x in [0, +infinity[]$
- For all $P subset.eq RR^X_+$, let
$
P^bot = { b in RR^X_+; forall a in P, underbrace((a⋅b <= 1), R(A, b)) } subset.eq RR^X_+
$
In particular $P^(bot bot) subset.eq P$
]
#definition([
A probabilistic coherent space is a pair
$X = (|X|, P X)$ where $|X|$ is a countable set, and $P X subset.eq RR^(|X|)_+$ such that
- $P X ^(bot bot) = P X$ (equivalent to $P X ^(bot bot) subset.eq P X$)
- $forall x in |X|$,
- $exists lambda > 0, lambda e_X in P X$
- $exists lambda > 0, lambda e_x in P X ^bot$
])
#example[
$
({*}, [0, 1]) &=: 1\
&=: bot\
(emptyset, {0}) &=: top\
&=: 0\
(|X|, [0, 1]^(|X|))\
({0, 1}, ([0, 1]^2)^bot &= {binom(x, y) | (binom(1, 1) dot binom(x, y)) = x + y <= 1 }) \
$
Given $X = (|X|, P X)$ a pcoh,
$X^bot := (|X|, P X^bot)$ is a pcoh.
]
#definition([
Let $X, Y$ be pcohs.
A _linear morphism_ from $X$ to $Y$ is a map \
#align(center)[$f in "Set"(P X, P Y)$]
such that there exists a (necessarily unique) matrix $tilde(f) in RR^(|X| times |Y|)_+$ such that
for all $a in P X$, \
#align(center)[$f(a) = (sum_(x in X) tilde(f)_(x,y) a_x)_(y in |Y|)$]
pcohs and linear morphisms form a category PCoh.
])