diff --git a/2.typ b/2.typ index 90c6b46..e098fc8 100644 --- a/2.typ +++ b/2.typ @@ -911,3 +911,66 @@ Similarly, if $LL$ has a terminal object $top$, $!top tilde.eq 1$. pcohs and linear morphisms form a category PCoh. ]) +#remark([ \ + $ tilde(id) = (delta_(x_1, x_2))_(cases(x_1 in |X|, x_2 in |X|)) + #h(1cm) (delta_(x,y) = cases(1 #h(.2cm) & x = y, 0 & x eq.not y)) $ + $ tilde(g compose f) = tilde(g) tilde(f) = (sum_(y in |Y|) tilde(g)_(y,z) tilde(f)_(x, y))_(cases(x in |X|, z in |Z|)) $ +]) + +#definition([ + Let $X_1, ..., X_n, Y$ be pcohs. A n-linear (or multilinear) map from $X_1, ..., X_n$ to $Y$ is a map + $ f in "Set"(P X_1 times ... times P X_n, P Y) $ + such that there exists a (necessarily unique) tensor + $ tilde(f) in RR^(|X_1| times ... times | X_n | times | Y |) $ + such that $forall (a_i) in (P X_i)$, + $ f(a_1, ..., a_n) = (sum_(cases(x_1 in |X_1|, ..., x_n in |X_n|)) tilde(f)_(x_1, ... x_n, y) dot a_x_1 ... dot a_x_n )_(y in |Y|) $ + +]) + +#definition([ + $X (*) Y$ is defined by + $| X (*) Y| = |X| times |Y|$ and, + $ P (X (*) Y)^bot = {tilde(f), f in "PCoh"(X, Y, 1)} $ ($f$ bilinear from $X, Y$ to 1) +]) + +#remark[ + For every $X, Y$ PCohs, + $ + "PCoh"(X (*) Y, 1) & -> "PCoh"(X, Y\; 1) \ + f & |-> ((a, b) |-> f(a (*) b)) + $ + is a bijection where + $ + a (*) b = (a_x b_y)_(x, y) in P(X (*) Y) + $ +] +#proposition[ + For every PCohs $X, Y, Z$, + $ + "PCoh"(X (*) Y, Z) & -> "PCoh"(X, Y\; Z) \ + f & |-> ((a, b) |-> f(a (*) b)) + $ + is a bijection +] + +#proposition[ + For every PCohs $W_1, ..., W_n, X, Y, Z$, + $ + "PCoh"(W_1, ..., W_n, X (*) Y\; Z) & -> "PCo"h(W_1, ..., W_n, X, Y\; Z) \ + f & |-> ((w_1, ..., w_n, x, y) |-> f(w_1, ..., w_n, a (*) b)) + $ + is a bijection +] + +#proposition[ + For every PCohs $W_1, ..., W_n, Z$, + $ + "PCoh"(W_1, ..., W_n, 1\; Z) & -> "PCo"h(W_1, ..., W_n, X, Y\; Z) \ + f & |-> ((w_1, ..., w_n) |-> f(w_1, ..., w_n, 1)) + $ + is a bijection +] + +#exercise[ + $("PCoh", **, 1)$ is symmetric monoidal. +]