update
All checks were successful
Build lyes.eu / build (push) Successful in 47s

This commit is contained in:
Lyes Saadi 2026-01-15 19:26:23 +01:00
parent 7c3a4d367a
commit d087578f97
Signed by: lyes
GPG key ID: 55A1D803917CF39A

63
2.typ
View file

@ -911,3 +911,66 @@ Similarly, if $LL$ has a terminal object $top$, $!top tilde.eq 1$.
pcohs and linear morphisms form a category PCoh. pcohs and linear morphisms form a category PCoh.
]) ])
#remark([ \
$ tilde(id) = (delta_(x_1, x_2))_(cases(x_1 in |X|, x_2 in |X|))
#h(1cm) (delta_(x,y) = cases(1 #h(.2cm) & x = y, 0 & x eq.not y)) $
$ tilde(g compose f) = tilde(g) tilde(f) = (sum_(y in |Y|) tilde(g)_(y,z) tilde(f)_(x, y))_(cases(x in |X|, z in |Z|)) $
])
#definition([
Let $X_1, ..., X_n, Y$ be pcohs. A n-linear (or multilinear) map from $X_1, ..., X_n$ to $Y$ is a map
$ f in "Set"(P X_1 times ... times P X_n, P Y) $
such that there exists a (necessarily unique) tensor
$ tilde(f) in RR^(|X_1| times ... times | X_n | times | Y |) $
such that $forall (a_i) in (P X_i)$,
$ f(a_1, ..., a_n) = (sum_(cases(x_1 in |X_1|, ..., x_n in |X_n|)) tilde(f)_(x_1, ... x_n, y) dot a_x_1 ... dot a_x_n )_(y in |Y|) $
])
#definition([
$X (*) Y$ is defined by
$| X (*) Y| = |X| times |Y|$ and,
$ P (X (*) Y)^bot = {tilde(f), f in "PCoh"(X, Y, 1)} $ ($f$ bilinear from $X, Y$ to 1)
])
#remark[
For every $X, Y$ PCohs,
$
"PCoh"(X (*) Y, 1) & -> "PCoh"(X, Y\; 1) \
f & |-> ((a, b) |-> f(a (*) b))
$
is a bijection where
$
a (*) b = (a_x b_y)_(x, y) in P(X (*) Y)
$
]
#proposition[
For every PCohs $X, Y, Z$,
$
"PCoh"(X (*) Y, Z) & -> "PCoh"(X, Y\; Z) \
f & |-> ((a, b) |-> f(a (*) b))
$
is a bijection
]
#proposition[
For every PCohs $W_1, ..., W_n, X, Y, Z$,
$
"PCoh"(W_1, ..., W_n, X (*) Y\; Z) & -> "PCo"h(W_1, ..., W_n, X, Y\; Z) \
f & |-> ((w_1, ..., w_n, x, y) |-> f(w_1, ..., w_n, a (*) b))
$
is a bijection
]
#proposition[
For every PCohs $W_1, ..., W_n, Z$,
$
"PCoh"(W_1, ..., W_n, 1\; Z) & -> "PCo"h(W_1, ..., W_n, X, Y\; Z) \
f & |-> ((w_1, ..., w_n) |-> f(w_1, ..., w_n, 1))
$
is a bijection
]
#exercise[
$("PCoh", **, 1)$ is symmetric monoidal.
]